Mostrando postagens com marcador Raios X. Mostrar todas as postagens
Mostrando postagens com marcador Raios X. Mostrar todas as postagens

segunda-feira, 31 de agosto de 2015

A radiação terahertz

Apesar de ainda pouco explorada, a radiação terahertz já fornece mostra de sua potencialidade em análises de materiais e obtenções de imagens.

quadro Marinha

© Virgilio Guidi (quadro Marinha)

Nada substitui o olho de um especialista para avaliar as particularidades de um quadro. Mas o emprego em importantes museus e instituições culturais do país de uma série de análises físicas e químicas tornou-se uma ferramenta adicional para entender o estilo e o processo criativo de certos pintores, dar parâmetros ao trabalho de conservação e restauração e trazer à tona facetas ocultas de algumas pinturas. Nesse sentido, a história do quadro Marinha, um óleo sobre madeira produzido provavelmente no início da década de 1940 pelo italiano Virgilio Guidi (1891-1984), é bastante ilustrativa. No catálogo do Museu de Arte Contemporânea da Universidade de São Paulo (MAC-USP), onde se encontra guardada, essa tela abriga, oficialmente, apenas uma pintura: uma vista do Grande Canal de Veneza, com destaque para a Igreja de San Giorgio Maggiore. No entanto, basta virar o quadro para ver, a olho nu, em seu verso o retrato de uma mulher. Imagens no infravermelho desse lado B da tela revelaram uma terceira pintura escondida sob as tintas que deram forma à figura feminina: outra cena marítima da cidade italiana.

Os raios X, raios gama, raios ultravioleta, raios infravermelhos e micro-ondas representam diferentes formas de radiação eletromagnética. A radiação infravermelha se manifesta sob a forma de calor.

No espectro eletromagnético, entre a faixa das micro-ondas e do infravermelho existe uma zona pouco explorada científica e tecnologicamente, a radiação terahertz gerada pelos raios T.

O nome vem da faixa de frequências dessa radiação, entre 0,3 e 3 THz (terahertz ou trilhões de hertz). Em termos de comprimento de onda, os raios T vão de 1.000 a 100 micrômetros.

Depois de muitas e infrutíferas tentativas de aproveitamento dos raios T, parece que agora há indícios de que teremos finalmente a exploração da última fronteira de pesquisa em eletrônica de alta frequência.

Há quase 90 anos, mais precisamente em 1923, E. F. Nichols e J. D. Tear publicaram um artigo com o sugestivo título “Unindo os espectros do infravermelho e das ondas elétricas”.

Desde então, físicos e engenheiros têm preconizado uma “nova era” para essa fronteira entre o infravermelho e a micro-onda, para logo depois se depararem com resultados pífios.

Os desenvolvimentos científicos e tecnológicos nos dois lados da fronteira têm sido notáveis, tais como os artefatos modernos: forno de micro-ondas, telefones celulares, telefones sem fio e GPS.

No lado do infravermelho, não é menos notável o desenvolvimento tecnológico, muitas vezes impulsionado por interesses militares. Entre as inúmeras aplicações civis, podemos destacar aquelas relacionadas a pesquisas em astronomia, em química e na análise de objetos de arte, sobretudo pinturas.

Enquanto a micro-onda, com frequência na faixa do gigahertz, é capaz tão somente de produzir rotações nas moléculas, a parte superior do infravermelho, com frequência maior que 10 terahertz, é capaz de produzir vibrações, resultantes de interações intermoleculares.

Já a radiação terahertz faz as duas coisas simultaneamente. A análise com raios T permite, ao mesmo tempo, a análise de materiais quanto à sua estrutura molecular, assim como a análise com micro-onda, e quanto à sua composição química, do mesmo modo que a análise com infravermelho.

Esse comportamento extremamente interessante é conhecido desde os anos 1920, mas foi necessário esperar por uma ideia bastante criativa para que feixes de raios T com alta luminosidade e grande faixa de frequências pudessem ser produzidos.

Uma ideia inovadora, originada nos laboratórios Bell, no final dos anos 1980, utilizou um laser de femtosegundos (femtosegundo é um quadrilionésimo de segundo). Quando um pulso emitido pelo laser atinge uma antena fotocondutiva, material que emite pulsos elétricos quando iluminada, também inventado pelos pesquisadores da Bell, o resultado é a emissão de pulsos com frequências entre 300 gigahertz e 10 terahertz.

Tão interessante quanto isso é o fato de que pequenas modificações técnicas na estrutura do circuito transformam uma antena emissora em receptora, dois elementos importantes para o funcionamento de um equipamento de raios T.

Seu alto poder de penetração em materiais desidratados, não-metálicos, plásticos, papéis e cartolinas e sua impenetrabilidade em materiais metálicos e líquidos polares como a água fazem da radiação T uma excelente ferramenta para obtenção de imagens, uma das aplicações mais extasiantes da atualidade.

Quando o feixe do laser atinge a antena emissora constituída de material fotocondutor, produz pulsos de raios T, os quais são modificados, em sua forma e frequência, em decorrência da interação com o material da amostra. Um sistema eletrônico convencional transforma os sinais elétricos produzidos pela antena em imagens.

Um cálculo simples mostra a eficiência desse sistema de aquisição de imagem com raios T. Antes do uso do laser de femtosegundo e das antenas fotocondutivas, seriam necessários 15 dias para a obtenção de uma imagem de 100 pixel x 100 pixel com raios T. Com o sistema desenvolvido pelo pessoal da Bell é possível analisar 100 pixels por segundo, de modo que a imagem de 100x100 é obtida em pouco mais de 1 minuto.

Muitos dos resultados de aplicações analíticas da radiação T são similares àqueles obtidos com o infravermelho. Já nas aplicações com imagens, além das duas formas de radiações eletromagnéticas, os raios X aliam-se na concorrência.

Os pesquisadores da Universidade de Tecnologia de Delft, na Holanda, mostraram como os raios T podem ser utilizados, de modo não destrutivo, para determinar espessuras de camadas de tinta abaixo de uma pintura, algo impossível com o uso de raios X ou infravermelho.

Ao contrário dos raios X, os raios T não ionizam o material analisado e, ao contrário do infravermelho, não o aquece por causa da baixíssima intensidade necessária para a realização das análises.

Apesar de todas as vantagens apontadas até aqui, ainda há uma séria limitação a ser superada nos atuais equipamentos: a baixa resolução espacial. A resolução espacial dos equipamentos atuais está na faixa do milímetro, ou seja, objetos na escala micrométrica não são bem identificados.

Aumentar a resolução espacial dos equipamentos de raios T é, portanto, um efervescente desafio de pesquisa, que poderá fazer com que a radiação terahertz seja digna dos sonhos dos pesquisadores da área.

Recentemente, Godfrey Gumbs e seus colegas da Universidade Cidade de Nova Iorque idealizaram um dispositivo que permite converter uma corrente contínua, como a armazenada em baterias, em uma fonte ajustável de radiação terahertz.

O dispositivo é baseado nos plásmons de superfície, ondas de elétrons que se formam na superfície dos metais. Foi idealizado um semicondutor híbrido: uma camada mais grossa de um material eletricamente condutor envolvida por duas camadas muito finas, que podem ser de grafeno, siliceno, ou mesmo de um gás.

Quando a corrente contínua passa através desse sanduíche, ela cria uma ressonância plasmônica com um comprimento de onda muito específico, que induz a emissão da radiação terahertz, que pode então ser "coletada" por uma antena em forma de grade.

Ajustando os vários parâmetros, como a densidade do semicondutor híbrido ou da corrente contínua aplicada, é possível ajustar o comprimento de onda, ou seja, a frequência da radiação terahertz produzida.

"Nossa abordagem baseada em semicondutores híbridos pode ser generalizada para incluir outros materiais bidimensionais emergentes, tais como o nitreto de boro hexagonal, a molibdenita e o disseleneto de tungstênio," disse o professor Andrii Iurov, coordenador da equipe.

Um artigo intitulado “Tunable surface plasmon instability leading to emission of radiation”, que descreve a converção de uma corrente contínua em uma fonte ajustável de radiação terahertz, foi publicado no Journal of Applied Physics.

Fonte: Ciência Hoje e Pesquisa FAPESP

sexta-feira, 8 de junho de 2012

Nova forma de geração de raios X

Cientistas conseguiram pela primeira vez fazer uma espécie de alquimia das luzes.

pulso de raio X com o maior espectro de cores

© U. Colorado (pulso de raio X com o maior espectro de cores)

Tenio Popmintchev, liderando uma equipe dos EUA, Áustria e Espanha, descobriu como converter um raio de luz infravermelha em um feixe altamente coerente de raios X e em uma multiplicidade de outros comprimentos de onda.

Em vez dos enormes aceleradores atuais, o novo equipamento gera raios X de alta pureza em um equipamento portátil, gerando "harmônicos de luz" num cristal e numa câmara de gás sob alta pressão.

A técnica de manipulação das ondas de luz, chamada HHG (high-harmonic generation), alcança uma geração de harmônicos muito maior do que num instrumento musical.

Cada fóton de raio X foi produzido por mais de 5.000 fótons infravermelhos gerando uma enegia de 1,6 keV (kiloelétron-volt), é como tocar uma nota 5.000 oitavas acima!

Os elétrons são seletivamente excitados e relaxados pela luz infravermelha, que emerge do outro lado como um feixe de raios X de altíssima qualidade e precisão. Ou seja, a luz infravermelha faz os átomos emitirem raios X.

A técnica conseguiu produzir pulsos de raios X de 2,5 attossegundos de duração, na fronteira do menor tempo já medido pelo homem.

Isto representa uma nova forma de geração de raios X, uma tecnologia cada vez mais importante para o estudo de materiais em nível atômico, assim como para a análise de fenômenos que ocorrem em escala temporais muito curtas, como as reações químicas.

A técnica é muito versátil: ela pode gerar feixes de luz coerentes e altamente direcionais, similares a um laser, do ultravioleta aos raios X, e toda a faixa de frequência entre os dois. Ou seja, um verdadeiro arco-íris de alta energia.

"Esta é a fonte de luz coerente de maior banda espectral já produzida," afirmou Henry Kapteyn, membro da equipe. "Ela definitivamente abre possibilidades para estudarmos as mais curtas escalas de tempo e espaço relevantes para qualquer processo em nosso mundo natural".

O avanço agora obtido fundamenta-se em desenvolvimentos anteriores do grupo, quando eles desenvolveram um laser na faixa do ultravioleta extremo e um feixe de luz ultravioleta mais preciso do que um laser.

Fonte: Science

sexta-feira, 10 de fevereiro de 2012

Efeito deixa átomo de ferro transparente

Cientistas conseguiram realizar um experimento pelo qual demonstraram que o núcleo atômico pode se tornar transparente.

princípio da transparência induzida eletromagneticamente

© DESY (princípio da transparência induzida eletromagneticamente)

A novidade, do grupo liderado por Ralf Röhlsberger no Deutsches Elektronen-Synchrotron (DESY), em Hamburgo, na Alemanha, é considerada importante para o desenvolvimento de computadores quânticos, que poderão substituir os atuais com velocidades de processamento hoje impossíveis de serem atingidas.

A técnica, que utiliza o efeito da transparência induzida eletromagneticamente, permite com que materiais opacos possam se tornar transparentes para a luz em certos comprimentos de onda como o raio X. A técnica permite o controle da transmissão e da velocidade da luz e envolve interferência quântica.

O experimento consitui de duas finas camadas de ferro-57 no interior de uma cavidade óptica, um espaço formado por dois espelhos paralelos de platina, que forçam os raios X a ficar indo para a frente e para trás múltiplas vezes.

As duas camadas de átomos de ferro-57, cada uma com aproximadamente três nanômetros de espessura, são mantidas em uma posição muito precisa entre os dois espelhos de platina usando camadas de carbono, que é transparente para os raios X do comprimento de onda utilizado no experimento.

O sanduíche inteiro, medindo 50 nanômetros de espessura, recebe um feixe extremamente fino de raios X, disparado em um ângulo muito baixo. No interior da cavidade óptica a luz é refletida para frente e para trás várias vezes, gerando uma onda estacionária, uma ressonância.

O ferro se torna quase transparente para os raios-X quando o comprimento de onda da luz e a distância entre as duas camadas de ferro ficam em uma proporção precisa; uma camada de ferro deve estar exatamente no mínimo da ressonância de luz, e a outra exatamente no máximo.

Quando as camadas são deslocadas no interior da cavidade óptica o sistema torna-se imediatamente não transparente, o que permite o controle deste fenômeno, denominado efeito quântico óptico, causado pela interação dos átomos no interior das camadas de ferro.

Ao contrário do que ocorre nos átomos individuais, os átomos dentro de uma cavidade óptica absorvem e irradiam a luz em sincronia. Graças à geometria precisa deste experimento, suas oscilações cancelam-se mutuamente, o que faz com que o ferro se torne transparente.

A ilustração acima ajuda a entender o fenômeno, mostrando múltiplas imagens das duas camadas de ferro-57: a interação dos raios X com as duas camadas leva a um estado de superposição quântica do ferro e de suas imagens nos espelhos, que faz com que os átomos de ferro pareçam transparentes.

Em contraste com os experimentos anteriores com a transparência induzida eletromagneticamente, apenas alguns poucos fótons são necessários para gerar este efeito por intermédio dos raios X.

Pelo efeito da transparência induzida eletromagneticamente, com um laser intenso em uma determinada frequência é possível fazer com que um material não transparente se torne transparente para a luz de outra frequência. Esse efeito é promovido pela interação complexa da luz com a eletrosfera, onde estão os elétrons.

No laboratório de luz síncrotron do DESY, o grupo demonstrou que esse efeito também existe em raio X quando os raios são direcionados para o núcleo atômico do isótopo de ferro 57 (pelo método chamado de espectroscopia de Mössbauer), que compreende 2% do ferro que ocorre naturalmente no planeta.

“O resultado de alcançar a transparência no núcleo atômico é, em suma, o efeito da transparência induzida eletromagneticamente sobre o núcleo. Certamente que ainda há um longo caminho a percorrer até que o primeiro computador com luz quântica se torne realidade. Entretanto, com esse efeito fomos capazes de realizar uma classe completamente nova de experimentos de óptica quântica de alta sensibilidade”, disse Röhlsberger.

Segundo o cientista, a nova fonte de laser de raios X XFEL, que está sendo construída em Hamburgo, representa uma grande oportunidade de se conseguir controlar este método através dos raios X.

O grupo alemão também demonstrou outro paralelo do efeito da transparência induzida eletromagneticamente; onde a luz presa em uma cavidade óptica viaja a uma velocidade de apenas alguns metros por segundo. Normalmente a velocidade é a da luz, de cerca de 300 mil quilômetros por segundo.

Fonte: Nature

quinta-feira, 26 de janeiro de 2012

Criado primeiro laser de raios X atômico

Uma equipe alemã usou o mesmo laboratório que criou o laser de raios X para gerar o primeiro laser de raios X atômico, ou seja, emitido a partir do bombardeamento de átomos com raios X muito poderosos.

laser de raios X atômico

© SLAC (laser de raios X atômico)

A equipe do Grupo de Estudos Avançados do Instituto Max Planck usou o LCLS (Linac Coherent Light Source), uma fonte de raios X recém-inaugurada na Universidade de Stanford, nos Estados Unidos.

Os pulsos de raios X, cada um cerca de um bilhão de vezes mais intenso do que qualquer outro disponível anteriormente, arrancaram elétrons das camadas internas de átomos do gás nobre neônio, preso no interior de uma cápsula.

Quando outros elétrons saltam de suas camadas mais externas para preencher as lacunas, cerca de 1 átomo em cada 50 responde emitindo um fóton na faixa dos raios X, com um comprimento de onda extremamente curto.

Esses raios X secundários foram então "estimulados" na vizinhança de outros átomos de neon para que novos pulsos ultra-curtos de raios X fossem gerados. Isso criou um efeito em cascata que amplificou a luz de raios X secundária cerca de 200 milhões de vezes.

Como os pulsos assim emitidos são coerentes, a emissão forma um laser de raio X extremamente puro.

Esse novo tipo de laser pode ser aplicado para identificar os detalhes das reações químicas ou acompanhar moléculas biológicas em atividade.

Embora o laser de raios X anunciado anteriormente e o novo laser de raios X atômico sejam ambos lasers, eles emitem a luz de forma diferente e com características diferentes.

O LCLS arremessa elétrons de alta energia através de campos magnéticos alternados, gerando pulsos de raios X muito brilhantes e muito mais potentes.

Já o novo laser de raios X atômico, que havia sido previsto na teoria em 1967, tem apenas um oitavo do comprimento de onda e sua cor é muito mais pura.

Essas qualidades vão permitir que ele distinga detalhes ainda não conhecidos de reações químicas muito rápidas, como as da fotossíntese.

O laser de raio X atômico é o mais potente já feito até agora, capaz de esquentar a matéria até cerca de 2 milhões de graus Celsius, mais quente do que a coroa do Sol!

Fonte: Nature

sábado, 8 de outubro de 2011

A pura luz do laser de raios X

Pesquisadores analisaram os primeiros resultados do LCLS (Linac Coherent Light Source), uma fonte de laser de raios X recém-inaugurada na Universidade de Stanford, nos Estados Unidos.
estação de espalhamento de raios X ressonante
© SLAC (estação de espalhamento de raios X ressonante)
Na medida da coerência do laser, que é o grau em que as ondas de luz são sincronizadas, descobriu-se que o LCLS produz a mais coerente radiação de raios X já medida.
Com um feixe de tão alta qualidade, a máquina é capaz de determinar a estrutura atômica de materiais com um nível de precisão sem precedentes.
Isto será útil em campos tão diversos quanto a descoberta de novos medicamentos, a engenharia de materiais e até a arqueologia.
Desde a invenção do maser, em 1957 - o antecessor de micro-ondas do raio laser de luz visível - cientistas têm desenvolvido lasers com comprimentos de onda cada vez mais curtos, aplicando-os a uma crescente variedade de propósitos.
Mas fazer lasers com comprimentos de onda muito curtos é um desafio. Para que uma fonte de luz seja um laser, a maioria dos seus fótons deve ser coerente, e eles devem oscilar em sincronia.
Uma alta coerência significa que a luz vai difratar mais precisamente, o que, para um feixe de raios X, significa imagens mais nítidas da estrutura atômica que está sendo estudada.
Feixes de laser também têm vários modos de oscilação, assim como instrumentos de cordas e tambores, e o feixe ideal tem todos os seus fótons contribuindo para um único modo.
detector Linac Coherent Light Source
© SLAC (detector Linac Coherent Light Source)
Quando o LCLS começou a operar, a evidência para uma luz verdadeiramente laser foi a presença de pulsos de raios X brilhantes, monocromáticos e altamente focados.
No entanto, até agora, as estimativas da coerência da luz eram baseadas unicamente em simulações.
Agora, os cientistas mediram na prática um tempo de coerência de 0,55 femtossegundo, o que significa que o pulso tem efetivamente a mesma cor e intensidade durante esse intervalo de tempo, equivalente a uma distância de cerca de 150 nanômetros ao longo da direção do feixe.
Assim, uma amostra de 150 nanômetros de profundidade pode ser iluminada com luz coerente de uma única vez, gerando uma fotografia da amostra com um grande campo de visão, da largura de milhares de átomos.
Ter este nível de coerência significa que a maioria dos fótons está confinada a um único modo espacial.
Cerca de 78% dos fótons do laser de raios X estavam no modo dominante, em comparação com menos de 1% em uma fonte de luz síncrotron de raios X típica.
Um artigo sobre a pesquisa foi publicado na revista Physical Review Letters.
Fonte: SLAC National Accelerator Laboratory