quinta-feira, 14 de fevereiro de 2013

Triângulos emissores de luz

Pesquisadores nos EUA conseguiram pela primeira vez produzir naturalmente camadas únicas de átomos do mineral tungstenite.

camadas triangulares de tungstenite

© Terrones Lab (camadas triangulares de tungstenite)

As folhas parecem ter propriedades de fotoluminescência invulgares que podem ser exploradas em dispositivos ópticos como lasers e diodos emissores de luz.
Os materiais 2D têm diferentes propriedades eletrônicas e mecânicas de seus pares em 3D e assim é possível encontrar utilidade em uma variedade de aplicações de dispositivos inovadores. Até agora, no entanto, a maioria das pesquisas neste campo centrou-se sobre o mais famoso dos materiais 2D, o grafeno, mas o fato de que esse material não tem um gap eletrônico direto significa que outros candidatos 2D também devem ser explorados.
Uma equipe liderada por Mauricio Terrones e Crespi Vicente da Penn State University, nos EUA, produziram monocamadas de tungstenite (WS2). Depositando minúsculos cristais de óxido de tungstênio com menos de um nanômetro de altura e, em seguida, passando estes cristais de enxofre em vapor com altas temperaturas de 850 °C. O resultado gerou monocamadas de dissulfureto de tungstênio dispostas num padrão com formato colmeia de abelha triangular que compreendem átomos de tungstênio ligados a átomos de enxofre.
Foi observado que esses triângulos brilham fortemente em suas bordas, ao invés dos seus centros; um efeito de fotoluminescência periférico que nunca obtido e que não tem sido relatado antes.
A fotoluminescência ocorre quando os portadores de carga (elétrons e lacunas) recombinam numa estrutura para emitir luz de um comprimento de onda diferente do que é utilizado para excitar o primeiro material. Os defeitos estruturais criados perto das bordas de um triângulo parece ser o lugar privilegiado para emissão de luz.
Os sistemas 2D são intrinsecamente diferentes dos seus homólogos a granel em 3D, e o WS2 não é exceção. Enquanto o material a granel é um semicondutor de gap indireto, o material de camada única, dispõe de um gap direto. Os gaps diretos são importantes em semicondutores, porque permitem que os dispositivos feitos a partir destes materiais emitem luz eficientemente.
Segundo a equipe, os triângulos de WS2 podem ser apliacados em optoeletrônica. Futuramente, eles poderão até vir a calhar como biomarcadores ou em tecnologia a laser.
Os pesquisadores agora planejam produzir outros materiais 2D que têm diferentes propriedades ópticas e eletrônicas. Alguns exemplos incluem MoSe2, NbS2 e WSe2. A equipe almeja compreender e controlar a emissão de luz a partir de materiais 2D com melhor eficiência, e tentar esculpir os triângulos em múltiplos dispositivos.

Fonte: Nano Letters

quarta-feira, 13 de fevereiro de 2013

A quebra o limite de Chandrasekhar?

As anãs brancas que se formam em campos magnéticos extremos podem ser estabilizadas, permitindo-lhes a se tornarem maiores antes de explodirem, de acordo com uma equipe de pesquisadores na Índia.

supernova Tycho - SN 1572

© NASA/MPIA/Calar Alto Observatory (supernova Tycho - SN 1572)

As supernovas do tipo Ia, causada pela explosão de anãs brancas, são muitas vezes utilizadas por astrônomos como “velas padrão” para calcular a distância de um ponto no espaço, porque eles são extremamente brilhantes e geralmente têm luminosidade semelhante. Mas algum tipo anormalmente brilhante de supernova Ia  pode ter sido observada recentemente e o novo trabalho pode fornecer uma explicação.
Uma anã branca é uma estrela que tem usado todo seu hidrogênio e hélio e está no estágio para queimar carbono. Por conseguinte, colapsou em um estado extremamente denso. Com nenhuma fonte de energia, que brilha somente por causa do calor residual, e ao longo de bilhões de anos, vai esfriar e se tornar uma anã negra, se permanecer em repouso.
Em 1935, o astrofísico indiano Subrahmanyan Chandrasekhar mostrou que uma estrela não geraria uma anã branca se sua massa fosse maior do que 1,44 massas solares, porque a temperatura do núcleo seria suficiente para inflamar a fusão de carbono. Se a massa de uma estrela aumentasse para além deste “limite de Chandrasekhar” depois do colapso para formar uma anã branca, a estrela encolhe ainda mais. A perda de energia potencial gravitacional provoca um aumento da temperatura, e um processo de fusão de fuga começa, criando uma grande explosão termonuclear que destrói a estrela em segundos.
Porque supernovas do tipo Ia são quase sempre formada pela explosão termonuclear de um objeto com aproximadamente a mesma massa, elas têm quase sempre o mesmo brilho. Observações de supernovas do tipo Ia distantes provou que a expansão do Universo estava se acelerando, uma descoberta recompensada com o Prêmio Nobel 2011 de Física. No entanto, houve um pequeno número de observações preocupantes recentemente nas proximidades de supernovas do tipo Ia que são anormalmente brilhante, e que parecem ter sido formadas pela detonação de uma anã branca bem acima do limite de Chandrasekhar. A ausência de um modelo satisfatório para a forma como estas poderiam ser produzidas colocou um ponto de interrogação sobre o uso de supernovas do tipo Ia como “velas padrão” para a observação de galáxias distantes.
Na nova pesquisa, Upasana Das e Banibrata Mukhopadhyay do Instituto Indiano de Ciência, em Bangalore sugerem que estas anãs brancas “super-Chandrasekhar” podem ocorrer em campos magnéticos muito altos. Tais campos poderiam estabilizar uma anã branca de massa até 2,58 massas solares por um processo conhecido como quantização Landau. Isto iria aumentar a resistência do remanescente estelar do colapso gravitacional, permitindo que ele continue a acreção de massa até atingir um limite superior.

Mas como tais campos magnéticos podem ser gerados?

Das e seus colegas destacam que os campos magnéticos de 107–108 G (Gauss) podem ser detectados em cerca de 25% de anãs brancas durante a acreção. Se tal estrela colapsa, o fluxo magnético é conservado, ao passo que o raio é reduzido drasticamente. Os campos magnéticos, por conseguinte, tornam-se ordens de magnitude mais forte.
Mukhodpadhyay acredita que a equipe precisa se concentrar em observar uma amostra maior de anãs brancas altamente magnetizadas na esperança de observar campos acima de 109 G. Porém, um aumento no campo pode não ser detectável durante a acreção da anã branca devido à blindagem magnética.
A existência anãs brancas “super-Chandrasekhar” é uma grande mudança de paradigma na compreensão da existência de anãs brancas e vários dos resultados relacionadosdeverá examinado sob essa luz. É cedo inferir que o modelo tem quaisquer implicações diretas para a taxa de expansão do Universo.
Jeffrey Silverman, um astrofísico da Universidade do Texas, em Austin, diz que o trabalho apresenta “um aumento impressionante na massa da anã branca que corresponde as observações recentes”. Ele é mais cético, no entanto, sobre as reivindicações dos pesquisadores de uma mudança de paradigma. Temos visto muito poucos destes objetos “super-Chandrasekhar”. É altamente improvável que os cálculos da história do Universo apresente muitos desses objetos!

Fonte: Physical Review Letters