sábado, 11 de agosto de 2012

Congelamento de monopolos magnéticos

Os monopolos magnéticos são entidades onde o pólo norte e sul magnéticos estão separados, e não deveriam existir.

monopolo magnético

© Discovery (monopolo magnético)

Se você tentar dividir um ímã de barra no meio, tudo que você conseguirá são dois ímãs, cada um com um pólo norte e sul. Em anos recentes, no entanto, a existência de monopolos, pelo menos sob a forma de "quasipartículas" consistindo de excitações coletivas entre muitos átomos, foi prevista e demonstrada em laboratório. Agora Stephen Powell, um cientista do Joint Quantum Institute (JQI) e da Universidade de Maryland, tem aguçado o quadro teórico em que os monopolos podem operar. Os fluxos estáveis ​​de monopolos magnéticos são aparentemente impossíveis, mas as correntes transitórias têm sido demonstradas, e se poderia imaginar a criação de uma corrente alternada, o equivalente magnético da eletricidade, chamada de “magnetricidade”, que pode ser explorada para a concepção de novos tipos de alta densidade de armazenamento de dados. As leis do eletromagnetismo preveem uma simetria muito grande entre forças elétricas e magnéticas. Esta igualdade não se estende, no entanto, as cargas magnéticas. As cargas elétricas isoladas, sob a forma de elétrons, são evidentemente muito comuns. Estas cargas são atraídas ou repelidas mutuamente, com uma força inversamente proporcional ao quadrado da distância entre as cargas. Uma carga positiva e uma carga negativa pode se juntar para formar um dipolo elétrico neutro. A situação no magnetismo parece diferente: dipolos sim, monopolos não. Mas novas idéias e novas experiências mudaram o pensamento convencional. Primeiro, as experiências com os elétrons frios fluindo em uma superfície bidimensional pode, sob a ação de poderosos campos magnéticos, serem estimulados a se moverem em órbitas circulares. Estas órbitas, por sua vez parecem interagir na produção de "quasipartículas" que têm uma carga igual a uma fracção da carga do elétron convencional. Este é o efeito Hall quântico fracionário.

Poderia haver um análogo de dipolos magnéticos? Poderia as circunstâncias permitem a existência dos pólos magnéticos isolados?

As experiências recentes e na Alemanha e na França apontam para esta possibilidade, o denominado "gelo de spin", um material sólido feito de elementos do disprósio (Dy), titânio (Ti), oxigênio (O). O bloco básico de construção destes materiais é um par de agrupamentos tetraédricos, constituído tipicamente de dois átomos de Dy (cada um dos quais atua como um ímã diminuto) apontando para fora de cada tetraedro e dois apontando para dentro. Isto é análogo ao da orientação de átomos de hidrogênio em gelo de água, daí o nome de "gelo de spin".

representação do gelo de spin

© Stephen Powell (representação do gelo de spin)

Normalmente todos os pólos magnéticos devem ser confinados dentro de dois pólos distintos, o dipolo magnético tradicional. No entanto, a uma temperatura suficientemente baixa, cerca de 5 K (kelvin), os átomos tentam se alinharem entre si, mas não podem por causa da geometria inerente do material conduzindo a um estado desordenado com flutuações fortes, sincronizados. Os pólos magnéticos separados podem se formar no meio deste tumulto, ou seja, as "quasipartículas" no gelo de spin com uma rede de "carga" magnética podem existir e se movimentarem. Um gás de cargas elétricas é chamado de "plasma", e a nuvem tênue análoga de cargas magnéticas é chamada de  "plasma monopolo."

Esta nova pesquisa explora o que acontece quando as flutuações são congeladas, por exemplo, em temperaturas ainda mais frias, ou em um elevado campo magnético. Mostra também como os monopolos estão confinados em dipolos magneticamente neutros novamente. Este estudo é o primeiro a prescrever a transição de fase a partir da fase de monopolo (também chamada de fase de Coulomb) para a fase de pólo confinado.

Fonte: Physical Review Letters

segunda-feira, 6 de agosto de 2012

Medindo o formato de um fóton

Pesquisadores conseguiram pela primeira vez medir o complexo "formato" de um fóton, as assim chamadas "partículas" individuais da luz.

ilustração do formato de um fóton

© M. Bellini/NIO (ilustração do formato de um fóton)

O feito teve a participação da brasileira Katiuscia Nadyne Cassemiro, professora da Universidade Federal de Pernambuco.

Em termos estritos, um fóton não é uma partícula e nem exatamente uma onda, ele é uma excitação de um campo eletromagnético.

E, como tal, a medição de sua forma promete ajudar a criar novas formas de criptografar informações.

Os pesquisadores desenvolveram uma técnica para refinar as medições de uma série de fótons individuais que estão em estados idênticos, mas arbitrários.

Isso expande também as possibilidades de usar os complicados "estados internos da luz" para transmitir dados.

Um pulso de luz tem uma grande gama de formatos possíveis, uma vez que sua forma é definida pelas amplitudes e fases de seus componentes de frequência.

Assim, é possível codificar informações no formato do fóton e transmiti-lo de um lugar para outro.

E a liberdade é tão grande que um único fóton pode não apenas representar qualquer letra do alfabeto, como até mesmo conter uma combinação quântica, uma superposição de várias letras.

O experimento agora realizado tem a ver com a leitura desse fóton, quando ele chega ao destino, o que é necessário para retirar dele a informação que ele carrega.

A técnica consiste em misturar o fóton a ser medido com um pulso de laser, permitindo que o fóton e o pulso interfiram mutuamente, reforçando ou cancelando um ao outro, dependendo do seu formato; quanto mais parecidos, maior é a probabilidade de detectar o formato preciso do fóton.

A equipe otimizou o método repetindo a mixagem várias vezes, com fótons idênticos, e redesenhando periodicamente o pulso de laser com base nas medições anteriores.

Finalmente, eles demonstraram que a técnica permite a recuperação de informações intencionalmente codificadas nos complexos estados de um fóton individual.

Fonte: Physical Review Letters

sexta-feira, 3 de agosto de 2012

Novo transístor altera estado da matéria

Logo depois do surgimento do promissor transístor a vácuo, agora acaba de ser inventado um novo tipo de transístor que permite realizar mudanças no estado da matéria usando correntes elétricas.

esquema do transístor de Mott

© RIKEN (esquema do transístor de Mott)

Cientistas do laboratório RIKEN, no Japão, criaram um componente que usa a acumulação eletrostática de cargas sobre a superfície de um material para desencadear uma alteração do seu estado físico.

O material muda completamente, passando de isolante para metálico. E não se trata apenas de uma transição de estados eletrônicos, o material sofre uma mudança em sua estrutura cristalina.

O novo componente já era previsto teoricamente e vinha sendo buscado avidamente pelos cientistas pelo seu potencial de dar maior velocidade e diminuir o consumo de energia dos circuitos eletrônicos.

Ele é chamado de transístor de Mott porque se baseia em um material chamado isolador de Mott, em homenagem ao físico britânico Neville Mott, um tipo de material que pode passar de condutor elétrico a isolante mediante um rearranjo de seus elétrons.

Inúmeros pesquisadores tentaram construir esses transistores inovadores antes, mas nunca ninguém havia conseguido produzir as correntes necessárias para forçar a transição de fase do isolante de Mott.

Masaki Nakano e seus colegas resolveram o problema adicionando uma gota de líquido iônico sobre o isolante de Mott, utilizaram dióxido de vanádio.

Quando uma pequena tensão foi aplicada ao líquido iônico, isto gerou um enorme campo elétrico na superfície do isolante de Mott, induzindo-o a mudar de estado. A transição de fase não aconteceu apenas na superfície do material, mas em todo o seu volume, literalmente transformando todo o bloco de dióxido de vanádio de isolante em metálico e vice-versa.

Embora esse fenômeno de mudança de fase não seja totalmente compreendido, os pesquisadores japoneses descobriram que não se trata apenas de uma mudança de fase eletrônica.

Usando radiação síncrotron, eles verificaram que o dióxido de vanádio sofre uma mudança na sua estrutura cristalina, passando de uma rede monoclínica para uma tetragonal.

O funcionamento de um transistor pode ser entendido como uma chave, na qual a tensão aplicada a um dos seus eletrodos controla o nível de corrente que flui pelos outros dois eletrodos; a aplicação da tensão naquele primeiro eletrodo liga e desliga a corrente que passa pelos outros dois.

A eficiência do transístor é medida pela comparação entre a corrente que ele deixa passar no estado ligado e a corrente que flui indesejadamente no estado desligado.

Um transístor de mudança de fase pode ser muito mais eficiente do que os transístores atuais, nos quais ocorre apenas uma alteração momentânea na resistência elétrica do material semicondutor, na medida que ele será melhor na fase de condução elétrica por ser um metal, e mais radical na fase de retenção da corrente, por ser um isolante.

Essa descoberta, e a imediata exploração do efeito em um transístor, leva o componente eletrônico sexagenário a uma nova fase da vida, com um horizonte de aplicações ainda mais amplo, além do aumento da eficiência nas aplicações já conhecidas.

E, se o efeito pode ser usado para mudar a fase de um material de isolante para metálico, a descoberta abre novas possibilidades de controlar o estado da matéria de outros materiais.

Fonte: Nature