sábado, 24 de março de 2012

Nova imagem do núcleo do átomo

Um conceito errôneo é visualizar o átomo como sendo análogo a um sistema planetário, admitindo o núcleo, composto por prótons e nêutrons, como sendo algo estacionário, fisicamente delimitado.

nova imagem do núcleo atômico

© ANL (nova imagem do núcleo atômico)

Enquanto que há muito tempo sabemos que os elétrons são "nuvens de probabilidade" ao redor dos núcleos, devido à sua peculiaridade bipolar, podendo se comportar como partículas ou ondas.

Na década de 1980 descobriu-se que alguns núcleos atômicos de elementos leves, como hélio, lítio e berílio, não têm bordas externas definidas: eles possuem halos, partículas que se destacam além das bordas do núcleo, criando uma nuvem que envolve o núcleo. A imagem abaixo mostra uma ilustração do núcleo de berílio circundado por seu halo. Segundo medições realizadas por uma equipe alemã, o halo se estende a até 7 femtômetros (0,000000000000007 metros) do centro de massa do núcleo, cobrindo uma área três vezes maior do que a parte densa do núcleo.

núcleo de berílio circundado por seu halo

© Dirk Tiedemann/Uni-Mainz (núcleo de berílio rodeado por seu halo)

Agora, depois de realizar as observações mais precisas já feitas até hoje do halo nuclear, cientistas demonstraram que até um quarto dos núcleons (prótons e nêutrons) do núcleo denso de um átomo estão viajando continuamente a uma velocidade de até 25% da velocidade da luz.

"Nós geralmente imaginamos o núcleo como um arranjo fixo de partículas, quando na realidade há um monte de fatores acontecendo no nível subatômico que nós simplesmente não podemos ver com um microscópio," ressalta o físico John Arrington, do Laboratório Nacional Argonne (ANL), nos Estados Unidos.

Ele e seus colegas usaram grandes espectrômetros magnéticos para observar o núcleo de átomos de deutério, hélio, berílio e carbono.

O berílio ao contrário dos outros átomos possui dois aglomerados de núcleons, cada um parecido com um núcleo do átomo de hélio-4. Esses núcleons, por sua vez, estão associados a um nêutron adicional.

Isso desfaz completamente a figura do núcleo como uma esfera fisicamente delimitada, além de mostrar que o halo é mais complexo do que se imaginava.

Por causa dessa configuração complicada, o núcleo do berílio apresenta um número relativamente alto de colisões, apesar de ser um dos núcleos menos densos entre todos os elementos.

Os cientistas afirmam que esse efeito acelerador pode ser resultado de interações entre os quarks que formam os núcleons, sendo que cada próton e cada nêutron consiste de três quarks muito fortemente ligados.

Quando os núcleons se aproximam uns dos outros, as forças que unem os quarks podem ser perturbadas, alterando a estrutura dos prótons e dos nêutrons, possivelmente até mesmo formando partículas compostas pelos quarks de dois núcleos diferentes.

O próximo passo dos pesquisadores ao estudar este fenômeno será obter uma imagem da distribuição dos quarks quando os núcleons se aglutinam.

Fonte: Argonne National Laboratory

sexta-feira, 23 de março de 2012

Mecanismo insensível aos campos magnéticos

Pesquisadores europeus criaram um mecanismo insensível a campos magnéticos, com aplicações potenciais nos setores militar e médico.

invisibilidade magnética

© Alvaro Sanchez (invisibilidade magnética)

Este avanço consiste na criação de campos magnéticos estáticos gerados por um ímã permanente ou de uma bobina atravessada por uma corrente elétrica. Estes campos já são utilizados nas imagens médicas de MRI (ressonância magnética) e em muitos sistemas de segurança usados em aeroportos.

O dispositivo desenvolvido por estes pesquisadores, entre eles Alvaro Sanchez, da Universidade Autônoma de Barcelona, na Espanha, é um cilindro com duas camadas concêntricas: a camada interior, constituída por um material supercondutor, repele os campos magnéticos, enquanto a camada exterior, de material ferromagnético, os atrai.

Colocado em um campo magnético, o cilindro não o perturba, não produz nem "sombra" nem "reflexo". Assim, um objeto colocado em seu interior não será detectado magneticamente ficando, portanto, insensível ao campo magnético, explicou Sanchez, que usa a palavra "invisibilidade" para se referir ao processo.

Como o dispositivo é feito de materiais comercialmente disponíveis e funciona em campos magnéticos relativamente fortes, ele pode, segundo os autores, ser facilmente implementado.

Este sistema pode proteger uma pessoa com marcapasso, sensível às ondas eletromagnéticas, quando precisar passar por um exame de ressonância magnética, por exemplo.

Também pode atuar como um escudo magnético ao redor de um submarino e de alguns equipamentos sensíveis ao campo eletromagnético.

Os trabalhos realizados por estes pesquisadores diferem daqueles feitos nos últimos anos com metamateriais - materiais compósitos artificiais - projetados para não refletir os raios de luz.

A luz flui sobre eles como água sobre a rocha, fazendo com que se torne invisível. Até agora, os metamateriais criados apenas obtinham uma invisibilidade parcial, ressaltam os autores dos trabalhos publicados.

Fonte: Science

quarta-feira, 21 de março de 2012

Descoberta a partícula mais leve

Uma nova partícula nuclear fundamental (do núcleo atômico) foi descoberta por dois pesquisadores da Universidade de Coimbra e do Instituto Superior Técnico (IST).

simulação de uma sopa de quarks e glúons

© BNL/RHIC  (simulação de uma sopa de quarks e glúons)

A E(38), como foi designada, é a partícula subatômica mais leve conhecida e, de acordo com os seus descobridores, ela ajuda a explicar as partículas nucleares enquanto micro-universos. Eef van Beveren, da Universidade de Coimbra, e George Rupp, do IST, já submeteram o artigo científico anunciando a descoberta à revista Physical Review Letters.

A E(38) é um hádron, mas ao contrário dos outros hádrons conhecidos, este não possui quarks (partículas ainda mais pequenas) na sua constituição, mas apenas glúons, as partículas que funcionam como cola para manter juntos os quarks. "No nosso modelo dos micro-universos, esta partícula é a que gera os próprios micro-universos", explicou o pesquisador de Coimbra, que coordenou o estudo, sublinhando que "o sinal da sua presença nos dados experimentais é muito claro".

A descoberta desta nova partícula não constitui propriamente uma surpresa para Eef van Beveren. Já há mais de 30 anos que o pesquisador holandês, ainda durante o doutoramento no seu país, abordou a existência dos quarks, que nunca aparecem isolados, mas confinados num espaço fechado, enquanto parte dos tais micro-universos. "É uma coisa fechada, de onde nada pode entrar ou sair". Mas este modelo está baseado na hipótese de existência de uma partícula fundamental - como a que agora foi descoberta. O físico holandês esperava que ela existisse, mas não havia sinais da sua presença.

Foi por isso que decidiu reanalisar os dados experimentais da física de partículas nos grandes aceleradores do mundo, como o de Stanford, nos Estados Unidos, do Japão e do CERN. Ao mesmo tempo, em colaboração com George Rupp desenvolveu um método matemático de análise e comparação de dados e foi então que viram o sinal de que estavam à espera. A experiência COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy), realizada no CERN, para produzir hádrons.

Nessa análise foram registrados uma quantidade de 46 mil eventos com 13 sigma de significância, que é um indicador de relevância estatística. Isto é mais que suficiente, ou seja, superior a 5 sigma, para declarar-se a existência de uma partícula. A seguir a figura mostra a evidência da partícula num diagrama do número de eventos em relação à massa.

nova partícula

© U. Coimbra (evidência da partícula)

"Há 30 anos previ que a massa desta partícula devia ser ao redor de 30 MeV (Mega-elétronVolts), mas o aperfeiçoamento do método matemático fez subir um pouco este valor, para 38 MeV", explica van Beveren, sublinhando que "com esta massa, ele é o hádron mais leve que existe". O hádron mais leve que até agora se conhecia, chamado píon, é três vezes mais pesado. O próton é 25 vezes mais pesado que a partícula E(38).

A E(38) é como uma bola de sabão ínfima, em que não existem quarks, e a sua película externa é feita de glúons. Que propriedades terá, ainda vai ser estudado, mas van Beveren antecipa que esta poderá ser a longo prazo uma nova fonte de energia nuclear limpa.

Um miligrama desta matéria fornecerá um megawatt durante um ano!

Fonte: Centro de Física Teórica da Universidade de Coimbra

segunda-feira, 19 de março de 2012

Gravidade quântica pode ser testada

Os físicos acreditam que a teoria da gravidade de Einstein e a física quântica vão coalescer em uma teoria única nas chamadas escalas de Planck.

pulso de laser usado para testar a gravitação quântica

© U. Viena (pulso de laser usado para testar a gravitação quântica)

Nessas escalas, de altíssimas energias e dimensões inimaginavelmente pequenas, acredita-se que ocorram fenômenos que não ocorrem em outras escalas.

O problema é que as escalas de Planck estão tão fora da dimensão humana que a maioria dos estudiosos afirma que é virtualmente impossível testar experimentalmente a gravidade quântica, a não ser em eventos cósmicos muito raros e difíceis de observar.

Um fator preponderante é que o comprimento de Planck é cerca de 1,6 x 10-35 metro. Se você der um zoom nessa dimensão, e torná-la do tamanho de 1 metro, então um único átomo terá o tamanho do Universo inteiro.

A energia de Planck, por outro lado, é tão descomunal que faz o acelerador do LHC parecer uma pilha descarregada; um acelerador de partículas capaz de produzir a energia de Planck seria enorme.

Outro fator intrigante é a massa de Planck, que é 2,17 × 10-8 kg, mais ou menos a massa de um grão de poeira, que parece ser grande demais para os fenômenos quânticos.

Fica então, de um lado, a teoria de Einstein especulando sobre dimensões muito grandes e, de outro, a mecânica quântica indagando sobre moléculas, átomos e coisas ainda menores, ambas falando muito bem em suas respectivas áreas, mas inconciliáveis.

Uma equipe internacional de físicos afirma que se pode testar experimentalmente algumas predições da teoria da gravidade quântica observando os efeitos quânticos em um sistema com a massa de Planck.

Na mecânica quântica, é impossível saber, ao mesmo tempo, onde uma partícula está e a que velocidade ela está se movendo.

Apesar disso, é possível fazer duas medições consecutivas: uma medição da posição da partícula, seguida por uma medição do seu momento, ou vice-versa.

Conforme a sequência usada - primeiro a posição e depois a velocidade, ou vice-versa -, serão obtidos resultados experimentais diferentes.

De acordo com várias teorias da gravidade quântica - ou candidatas a teoria da gravidade quântica - essa diferença entre as duas medições se altera dependendo da massa do sistema, uma vez que o comprimento de Planck, uma espécie de quantum do comprimento, coloca um limite à medição de distâncias.

A equipe de físicos agora demonstrou matematicamente que, embora essas diferenças sejam muito pequenas, elas podem ser verificadas usando sistemas quânticos muito maciços, utilizando a gigantesca massa de Planck.

Mas isso não é um problema assim tão grande, uma vez que a própria equipe da Universidade de Viena já conseguiu estabelecer uma interação entre um fóton e um ressonador micromecânico, criando o chamado acoplamento forte, capaz de transferir efeitos quânticos para o mundo macroscópico.

Ou seja, para eles, é possível testar a gravidade quântica em laboratório.

O experimento proposto lembra um pouco uma técnica usada recentemente para produzir luz a partir do vácuo.

A ideia principal é usar um pulso de laser para interagir quatro vezes com um espelho em movimento para avaliar com exatidão a diferença entre as duas medições - medir primeiro a posição e depois medir o momento, em comparação com medir primeiro o momento e depois medir a posição.

Segundo a equipe, atingindo a precisão adequada, é possível mapear o efeito no pulso de laser, lendo os resultados com técnicas de óptica quântica.

"Qualquer desvio do resultado previsto pela mecânica quântica será muito excitante," afirmou Igor Pikovski, da Universidade de Viena, idealizador da técnica, "mas mesmo se não for observado nenhum desvio, os resultados poderão ajudar na busca por possíveis novas teorias."

Fonte: Nature Physics e Inovação Tecnológica

sexta-feira, 16 de março de 2012

Transmissão de mensagem através de neutrinos

Os neutrinos talvez não sejam mais rápidos do que a luz, mas podem se tornar as estrelas de uma nova forma de comunicação.

antena de transmissão

© Fermilab (antena de transmissão)

Cientistas do Projeto Minerva demonstraram na prática que é possível transmitir uma mensagem usando neutrinos.

E como neutrinos são capazes de atravessar virtualmente qualquer coisa, isto significa que as mensagens podem ser enviadas diretamente através da Terra.

Neste experimento pioneiro, a palavra "neutrino" foi transmitida a uma distância de 1 km, incluindo 210 metros de rocha sólida.

A esfericidade da Terra exige múltiplas torres de repetição para a transmissão de dados por ondas eletromagnéticas.

Se remetente e destinatário estiverem longe o suficiente, a solução mais viável é transmitir a mensagem para um satélite artificial, que está no alto para captar os dois e servir de ponte para a comunicação.

Uma alternativa é ligar todos os pontos por redes de fibras ópticas.

Mas uma mensagem de neutrinos pode ser enviada diretamente, simplesmente mirando na posição do destinatário e disparando o feixe, não importando se há montanhas, oceanos, ou mesmo se o destinatário está do outro lado da Terra.

Neutrinos são partículas eletricamente neutras e quase sem massa - sua massa é tão desprezível que um neutrino é capaz de atravessar um cubo de chumbo sólido, com 1 ano-luz de aresta, sem se chocar com um só átomo.

Isso, obviamente, impõe um desafio para uma futura comunicação por neutrinos: construir uma antena capaz de detectá-los.

Felizmente os físicos vêm fazendo isso há anos, para criar os observatórios que permitam estudá-los.

Ainda são detectores muito sensíveis, que precisam ser instalados em compartimentos subterrâneos, capazes de isolá-los de outros tipos de radiação.

detector Minerva

© Fermilab (detector Minerva)

Neste experimento, os cientistas usaram como antena de recepção o detector Minerva, que pesa nada menos do que 170 toneladas. O transmissor foi o feixe de neutrinos NUMI (Neutrinos Main Injector).

Ambos são parte do acelerador de partículas Fermilab, nos Estados Unidos.

Embora pareça interessante, dificilmente as mensagens por neutrinos terão uso prático: a velocidade atingida na transmissão foi de 0,1 bit por segundo.

Ou seja, levou mais de duas horas para que a palavra "neutrino" fosse transmitida.

A mensagem foi codificada de forma binária, onde transmitir neutrinos significava 1, e não transmitir neutrinos significava 0.

Embora o feixe de transmissão dispare trilhões de neutrinos de cada vez, o detector só raramente consegue detectá-los.

A palavra neutrino consistia de 25 pulsos, separados entre eles por um período sem transmissão de 2 segundos. Isso foi repetido 3.500 vezes ao longo de 142 minutos.

Em média, a "antena" detectou 0,81 neutrino a cada pulso, com uma taxa de erro de 1% - apenas 1 em cada 10 bilhões de neutrinos foi detectado.

Fonte: Fermilab e Inovação Tecnológica

quinta-feira, 15 de março de 2012

Experimento em usina nuclear chinesa

Neutrinos são pequenas partículas esquivas. Apenas no final da década de 1990 foi descoberto que eles têm massa, após anos de indicações duvidosas nesse sentido.

detector de neutrino Daya Bay

© Roy Kaltschmidt (detector de neutrinos Daya Bay)

Podem oscilar entre três tipos, ou "sabores", mudando a identidade durante o trajeto. Talvez o que lhes tenha trazido mais fama é que foram acusados, no ano passado, de quebrarem a lei cósmica de viajar mais rápido que a luz (o júri ainda não deliberou, mas a absolvição parece iminente).
Agora, cientistas estão mais próximos de descobrir o modus operandi do neutrino. A colaboração de físicos possibilitou medir um dos descritores essenciais da mudança de comportamento, que troca o sabor do neutrino, um número chamado θ 13 (lê-se “teta um três”). Esse número, conhecido como ângulo de mistura, descreve a probabilidade de uma antipartícula de neutrino do elétron, o antineutrino do elétron, oscilar para outro sabor, percorrendo uma distância relativamente curta (cada um dos três sabores de neutrinos – do elétron, do tau e do múon – tem sua própria antipartícula parceira). Dois outros parâmetros de oscilação de neutrinos, ou ângulos de mistura, já foram medidos, mas o θ 13 é relativamente pequeno se comparado com os outros dois e provou ser mais difícil de definir.
Desde o ano passado, um grupo de físicos tenta medir o θ 13 rastreando antineutrinos emitidos por uma grande usina nuclear Chinesa. A colaboração do experimento do Reator de Neutrinos Daya Bay construiu seis detectores, alguns perto dos reatores e outros a mais de um quilômetro de distância, para acompanhar como antineutrinos do elétron se transformam em outros sabores ao viajar através do espaço. Já que os detectores são ajustados para identificar apenas antineutrinos do elétron, qualquer oscilação significa que os neutrinos não serão detectados, isto é, eles parecem desaparecer. Outros experimentos tomaram o rumo oposto, procurando o surgimento de neutrinos do elétron em um feixe que transporta outros tipos de neutrinos.
Em apenas dois meses de dados, o conjunto distante de detectores registrou mais de 10 mil visitas de antineutrinos do elétron. Isso, porém, corresponde a apenas 94% do quanto seria ingenuamente esperado por extrapolação a partir dos detectores mais próximos dos reatores nucleares. Isso significa que uma fração substancial oscilou para outro sabor em sua viagem relativamente curta. “O que vemos agora é que este desaparecimento (de antineutrinos do elétron) está em 6%”, afirma o físico de neutrinos Karsten Heeger, da Universidade de Wisconsin-Madison, membro da colaboração Daya Bay. “É um efeito bastante grande”. Heeger apresentou os resultados experimentais em 8 de março em um simpósio na Universidade Duke, e o grupo submeteu seu estudo para a Physical Review Letters.

Fonte: Scientific American Brasil

quarta-feira, 7 de março de 2012

Um diodo emissor de luz eficiente

Físicos conseguiram demonstrar na prática, pela primeira vez, que um semicondutor pode emitir mais energia do que consome.

LED

© APS (diodo emissor de luz)

O semicondutor é um diodo emissor de luz (LED) que absorve energia na forma de eletricidade e a emite na forma de luz.

Os cálculos teóricos que indicavam que isso era possível foram feitos há décadas.

A energia absorvida por um elétron que viaja através de um LED é igual à sua carga vezes a tensão aplicada, que causou seu movimento.

Mas se esse elétron ocasionar a emissão de um fóton, ou seja, se ele produzir luz, a energia do fóton emitido depende da chamada bandgap - a diferença de energia entre os elétrons da camada de condução e da camada de valência - que pode ser muito maior.

Ou seja, potencialmente a energia gerada pode ser maior do que a energia consumida. Mas ninguém nunca havia visto isto acontecer na prática.

Como, na maior parte dos casos, a grande maioria dos elétrons não produz fótons, o rendimento médio, em termos da luz emitida por um LED, fica abaixo da potência elétrica consumida.

Parthiban Santhanam e seus colegas do MIT (Massachusetts Institute of Technology) conseguiram produzir o efeito previsto pela teoria, ainda que, em seu LED, menos de 1 em cada 1.000 elétrons produza efetivamente um fóton.

Eles criaram um LED com uma bandgap muito estreita, e aplicaram uma tensão tão pequena que o componente funciona como se fosse um resistor.

A partir daí, eles começaram a cortar a tensão pela metade, reduzindo a potência elétrica por um fator de 4.

Mas o número de elétrons caiu apenas por um fator de 2, e consequentemente a potência da luz emitida.

Ao chegar a uma potência elétrica de entrada de 30 picowatts, os pesquisadores detectaram cerca de 70 picowatts de luz emitida.

Essa energia extra vem das vibrações da rede atômica do material, induzidas pelo calor ambiente; logo, o LED se resfria ligeiramente, como acontece nos trocadores de calor termoelétricos.

O experimento fornece luz insuficiente para a maioria das aplicações práticas. Contudo, ele demonstra que aquecer os diodos emissores de luz aumenta sua potência de saída e sua eficiência.

Isso significa que eles podem se comportar como motores de calor termodinâmicos, mas provavelmente não nas altas velocidades de chaveamento que eles alcançam nos aparelhos eletrônicos modernos.

Fonte: Physical Review Letters

domingo, 4 de março de 2012

Ondas de rádio torcidas em múltiplos canais

Um grupo de pesquisadores italianos e suecos parece ter resolvido o problema do congestionamento dos canais de transmissão de dados via rádio ou transmissões wireless.

ondas eletromagnéticas torcidas

© Revista Física (ondas eletromagnéticas torcidas)

Celulares, internet sem fio e TVs digitais estão provocando um esgotamento rápido do número de frequência de rádio disponíveis para transmitir informações, embora a adoção da era digital esteja longe de atingir seu potencial.

A saída pode ser trançar as ondas de rádio, girando-as em seu próprio eixo, até que elas assumam o formato da rosca de um parafuso.

Uma onda pode ser girada ao redor de seu eixo um certo número de vezes, tanto no sentido horário quanto anti-horário, o que permite montar inúmeras configurações de ondas diferentes, que podem compartilhar a mesma banda de transmissão, ou a mesma frequência.

Agora, Fabrizio Tamburini e seus colegas das universidades de Pádua (Itália) e Uppsala (Suécia) demonstraram que isso também é possível de se fazer na prática com as ondas de rádio.

As ondas de rádio torcidas permitem que um número praticamente infinito de canais possa ser transmitido e recebido em uma mesma área. O mecanismo funciona para rádio, TV e WiFi.

Para demonstrar a técnica, a equipe transmitiu ondas de rádio torcidas, na banda de 2,4 GHz, por uma distância de 442 metros, entre uma casa na Ilha de São Jorge e um prédio na região continental de Veneza, na Itália.

Os dois canais inseridos na transmissão foram detectados e separados perfeitamente.

"É possível usar a multiplexação, como na TV digital, em cada um dos feixes, para implementar ainda mais canais nos mesmos estados, o que significa que se pode obter 55 canais na mesma banda de frequência," disse Tamburini.

A descoberta tem efeitos também na astrofísica.

Os buracos negros, por exemplo, estão girando constantemente. Conforme as ondas passam por eles, elas são forçadas a girar, alinhando-se com o buraco negro.

De posse dos novos cálculos, os astrofísicos poderão tirar mais informações da luz captada, em diversos comprimentos de onda, vinda desses e de outros corpos celestes.

"Nós descobrimos que isso cria um novo efeito relativístico que estampa um momento angular orbital nessa luz," afirma o grupo, em um outro artigo que estabelece os fundamentos teóricos da descoberta.

Fonte: New Journal of Physics e Nature Physics