quinta-feira, 30 de setembro de 2010

Objetos movidos por 1,5 m apenas com luz

Cientistas desenvolveram método para mover apenas com o uso de luz partículas por distâncias nunca conseguidas anteriormente. Foi usado um raio laser especialmente criado para a pesquisa.
raio laser movendo pequena partícula
© ANU (raio laser movendo pequena partícula)
Equipe do Centro de Física a Laser, da Universidade Nacional da Austrália, conseguiu mover partículas extremamente pequenas por 1,5 m usando apenas a força do raio laser. O tamanho das microesferas variava entre 60 e 100 micrometros.
Por 40 anos, cientistas usaram radiação de luz para mover e manipular pequenos objetos. Até agora, os movimentos eram restritos a pequenas escalas, por não mais que milhares de micrometros - e a maioria em líquidos. Manipulação óptica de partículas por grandes distâncias podem ter várias aplicações, como permitir o transporte de contêineres com substâncias perigosas sem a necessidade de toque.
O laser não funciona no vácuo, então seu uso é de grande importância na Terra, como na montagem de micro máquinas e componentes eletrônicos.
Fonte: Phys.Org

sábado, 25 de setembro de 2010

Pista para a gravitação quântica

A medição direta de efeitos de gravitação quântica é praticamente impossível. Os motivos são que eles têm origem em locais inacessíveis ao homem, como em buracos negros, e seus efeitos são extremamente sutis.
ilustração gravitação quântica
© NASA (ilustração gravitação quântica)
Mas um grupo de físicos brasileiros desenvolveu um meio de se estudar indiretamente um desses fenômenos, a flutuação da velocidade da luz, por meio de experimentos de propagação de ondas acústicas em fluídos com aleatoriedade, como em coloides, líquidos heterogênios que contêm partículas ou moléculas de diferentes tamanhos em suspensão.
O trabalho foi realizado por Gastão Krein, do Instituto de Física Teórica (IFT) da Universidade Estadual Paulista (Unesp), Nami Svaiter, do Centro Brasileiro de Pesquisas Físicas (CBPF), e Gabriel Menezes, pós-doutorando da Unesp.
A ideia surgiu de que a propagação do som em fluidos coloides poderia apresentar efeitos simililares aos da luz em ambientes nos quais a gravitação quântica seria relevante.
As flutuações em um fluido podem ser clássicas ou quânticas. A pesquisa demonstra a validade de se usar microvibrações em coloides como plataforma para estudo da gravitação quântica. Os dois fenômenos são descritos por equações matemáticas similares.
Se estudos com coloides são comuns e conhecidos, o mesmo não se pode dizer do segundo fenômeno. Um dos feitos da gravidade quântica é que a velocidade da luz não é uma constante, como ensina a física clássica, mas flutua de um ponto a outro devido aos efeitos quânticos. Estima-se que esse tipo de gravidade esteja presente em buracos negros e tenha vigorado durante o Big Bang.
Outros experimentos com fluidos já haviam sido propostos para estudar efeitos de gravidade quântica, mas o brasileiro é o primeiro a contemplar o estudo das flutuações da velocidade da luz através das flutuações da velocidade de propagação de ondas acústicas em fluidos.
Os pesquisadores pretendem investigar, por meio de modelos com fluidos, o equivalente a um buraco negro e como vibrações acústicas quânticas são criadas e destruídas próximos a essas formações no espaço.
Os físicos buscam compreender melhor o fenômeno conhecido como “radiação Hawking”, prevista em 1973 pelo físico inglês Stephen Hawking. Segundo Hawking, os buracos negros encolhem com a perda de energia por meio dessa radiação.
“Com um fluido, podemos controlar parâmetros do experimento, como a densidade e a concentração das partículas em suspensão, e, com isso, aprender como muda a propagação do som de maneira controlável no laboratório. Isso permitirá construir correlações dos resultados com o que ocorre na gravitação quântica”, disse Krein.
Fonte: Physical Review Letters e Agência FAPESP

quinta-feira, 23 de setembro de 2010

Medidos efeitos da Teoria da Relatividade em pequenas alturas

O Instituto Nacional de Padrões e Tecnologia do Estados Unidos (NIST) conseguiu demonstrar que a teoria mais famosa de Albert Einsten é mensurável mesmo a pequenas alturas, e que o tempo passa mais rápido para corpos a alguma distância do chão do que para corpos encostados no solo.
efeitos relativísticos próximo do solo
© Science (efeitos relativísticos próximo do solo)
A Teoria da Relatividade afirma que o tempo passa mais depressa em maiores elevações em decorrência da diminuição da força gravitacional. É um efeito muito pequeno, da ordem de bilhonésimos de segundo, mas existe.
A grande sacada dos cientistas do NIST foi conseguir medir esta diferença. Eles utilizaram dois relógios atômicos que utilizam vibrações de um único íon de alumínio entre dois níveis de energia para calcular o tempo.
Os cientistas mediram a diferença de tempo decorrido entre dois relógios atômicos de alumínio separados por cerca de 33 cm de altura. Observaram também que a diferença de tempo é irrelevante para a escala humana, cerca de 90 bilionésimos de segundo em um período de 79 anos. Em termos práticos, isso quer dizer que a cabeça de uma pessoa, a quase dois metros do chão, envelhece mais depressa que seus pés.
Além disso, a Relatividade de Einstein ainda foi comprovada em outros aspectos, como na passagem mais lenta do tempo a maiores velocidades. O experimento mediu o chamado "Paradoxo dos Gêmeos" também por meio dos relógios atômicos. O paradoxo afirma que se dois gêmeos estiverem viajando em foguetes, o que estiver voando a uma velocidade maior voltará mais novo.
A equipe acredita que os experimentos podem um dia ser úteis para a geodésia, ciência que estuda as variações do campo gravitacional terrestre, com aplicações em geofísica, hidrologia e testes de física experimental no espaço.
Fonte: Science

quinta-feira, 16 de setembro de 2010

Aniquilação de matéria e antimatéria pode criar laser de raios gama

O positrônio é um átomo exótico, de vida extremamente curta, formado pela união de um elétron com sua antipartícula, o pósitron, sem um núcleo.
câmara de alto vácuo para criação de positrônio
© UC Riverside (câmara de alto vácuo para criação de positrônio)
Em 2005, físicos da Universidade da Califórnia criaram uma molécula de positrônio, uma substância completamente nova, também chamada de matéria artificial, porque ela essencialmente é formada por uma junção de matéria e antimatéria. O feito foi confirmado em 2007.
Agora, a mesma equipe conseguiu isolar pela primeira vez uma amostra de átomos de positrônio polarizados pelo spin. O spin é uma propriedade fundamental e intrínseca de um elétron, e se refere ao momento angular do elétron. Átomos polarizados pelo spin são átomos que estão todos no mesmo estado de spin.
Uma grande amostra de átomos de positrônio spin-polarizados (com mesmo estado de spin) é necessária para criar uma outra forma especial da matéria, chamada condensado de Bose-Einstein, onde bilhões de átomos entram em sintonia e se comportam como se fossem um gigantesco átomo individual.
Para obter este resultado a densidade dos átomos de positrônio foi elevada, propiciando aniquilamento parcial quando interagem entre si.
Os átomos de positrônio podem ser de dois tipos, quanto ao spin: up e down. Os átomos de positrônio só são aniquilados quando um tipo up se encontra com um tipo down. Dois átomos com o mesmo spin não se afetam.
Na colisão de matéria e antimatéria é gerado um disparo de raios gama. Esse gerador de raios gama pode ser a fonte de radiação necessária para criar um laser de raios gama e para produzir energia por fusão nuclear.
A eventual produção de um condensado de positrônio possibilitará compreender por que o universo é feito de matéria, e não de antimatéria ou simplesmente energia pura, além de auxiliar na mensuração da interação gravitacional da matéria com a antimatéria.
Fonte: Physical Review Letters

sexta-feira, 10 de setembro de 2010

Leis da Física podem variar ao longo do Universo

Uma equipe de astrofísicos está propondo uma teoria que muda radicalmente a forma como entendemos o Universo. O grupo afirma ter encontrado indícios de que as leis da física são diferentes em diferentes partes do Universo.
constante de estrutura fina
© Julian Berengut/UNSW (constante de estrutura fina)
O artigo propõe que uma das supostas constantes fundamentais da natureza talvez não seja assim tão constante.
Em vez disso, este "número mágico", conhecido como constante de estrutura fina, ou constante alfa, parece variar ao longo do Universo. A constante alfa mede a magnitude da força eletromagnética, ou seja, a intensidade das interações entre a luz e a matéria.
Há alguns anos, físicos propuseram que alfa poderia ter variado ao longo do tempo,  numa escala de 12 bilhões de anos, mas agora os físicos propõem que ela varia ao longo do espaço.
Pelos dados obtidos pelos pesquisadores, a constante alfa não seria constante, mas variável, contrariando o princípio da equivalência de Einstein, que estabelece que as leis da física são as mesmas em qualquer lugar.
As implicações para o nosso entendimento atual da ciência são profundas. Se as leis da física passam a ser apenas localizadas, pode ser que, embora a nossa parte observável do Universo favorece a existência da vida e dos seres humanos, outras regiões mais distantes podem ter diferentes leis que se oponham à formação da vida, pelo menos tal como a conhecemos.
As conclusões dos pesquisadores foram baseadas em medições realizadas com o Very Large Telescope (VLT), no Chile, e com os maiores telescópios ópticos do mundo, no Observatório Keck, no Havaí.
"Os telescópios Keck e VLT estão em hemisférios diferentes, eles olham para direções diferentes ao longo do Universo. Quando olhamos para o norte com o Keck, vemos em média um alfa menor nas galáxias distantes, mas quando olhamos para o sul com o VLT, vemos um alfa maior. A variação observada é muito pequena, não mais do que 1 parte em 100.000. Mas é possível que variações muito maiores possam ocorrer fora do nosso horizonte observável", explica o Dr. Julian King, coautor do trabalho.
"Depois de medir a constante alfa em cerca de 300 galáxias distantes, surgiu uma consistência: este número mágico, que nos dá a força do eletromagnetismo, não é o mesmo em todos os lugares, como ele é aqui na Terra, e parece variar continuamente ao longo de um eixo preferencial através do universo," explica o professor John Webb, da Universidade de Nova Gales do Sul, na Austrália.
eixo magnético universal
© John Webb/UNSW (eixo magnético universal)
Este talvez seja o elemento mais intrigante da proposta, o fato de a variação ter sido detectada como uma continuidade ao longo do espaço, o que daria uma espécie de "eixo preferencial" para o Universo; é como se houvesse um eixo magnético universal, atravessando todo o Universo observável, da mesma forma que há um eixo magnético de polo a polo da Terra.
De forma bastante interessante, esse eixo magnético universal coincide com medições anteriores que deram origem à teoria do chamado Fluxo Escuro, que indica que uma parte da matéria do nosso Universo estaria vazando por uma espécie de "ralo cósmico", sugada por alguma estrutura de um outro universo.
Se os dados se confirmarem, e não tiverem outra explicação menos revolucionária, um achado como esse poderia obrigar os cientistas a repensarem totalmente sua compreensão das leis da Natureza.
"A constante de estrutura fina, e outras constantes fundamentais, são absolutamente centrais para a nossa teoria atual da Física. Se elas realmente variam vamos precisar de uma teoria melhor, mais profunda," diz o Dr. Michael Murphy, coautor do trabalho.
A variação das leis da física, seja no espaço ou no tempo, sempre ocupou a mente dos cientistas. Pelas teorias atuais, uma pequena variação de alfa, por exemplo, significaria que as estrelas não produziriam carbono, a base da química que forma a vida na Terra.
É por isso que os cientistas afirmam que são as características "especiais" deste nosso ponto no Universo que criam as condições para a vida como a conhecemos, características estas que poderiam não existir em outros pontos.
"Embora uma 'constante variável' possa abalar a nossa compreensão do mundo que nos rodeia, afirmações extraordinárias exigem evidências extraordinárias. O que estamos descobrindo é extraordinário, não há dúvida sobre isso," diz Murphy.
Será que uma variação de 1 em 100.000 é assim tão extraordinária para corroborar esta hipótese teórica?
Fonte: Physical Review Letters (artigo submetido)

sexta-feira, 3 de setembro de 2010

Elétrons são flagrados com massa negativa

Físicos do Instituto Max Born, em Berlim, descobriram que elétrons no interior de cristais semicondutores têm uma massa inercial negativa quando são fortemente acelerados em um campo elétrico.
equipamento utilizado para identificar a massa negativa do elétron
© Uwe Bellhäuser (identificação da massa negativa do elétron)
No século 17, Isaac Newton descobriu que uma força faz com que um corpo acelere. A massa inercial do corpo é determinada pela relação entre força e aceleração, ou seja: dada uma mesma força, um corpo mais leve é acelerado mais fortemente do que um corpo pesado.
Assim, partículas elementares, como os elétrons livres, que têm uma massa de apenas 9,109×10-31 kg, podem ser acelerados em campos elétricos a velocidades extremamente altas.
Se o campo elétrico for pequeno, o movimento dos elétrons no interior de cristais é regido pelas mesmas leis. Neste regime, a massa de um elétron no cristal é apenas uma pequena parte da massa de um elétron livre.
O que os pesquisadores demonstraram é que os elétrons nos cristais, quando submetidos a campos elétricos extremamente elevados, apresentam um comportamento completamente diferente.
Segundo os experimentos, a massa dos elétrons se torna até mesmo negativa!
Para obter esse resultado, eles aceleraram os elétrons até uma velocidade de 4 milhões de quilômetros por hora em um período e tempo extremamente curto de 100 femtossegundos (=0,000 000 000 000 1 segundo).
Como a massa de um corpo é positiva, a aceleração deve se dar sempre no mesmo sentido da força aplicada sobre ele.
Contudo, logo depois de ser acelerado, o elétron pára e então, inesperadamente, move-se para trás. Isto significa que a aceleração está no sentido oposto à força, o que só pode ser explicado, segundo os físicos, por uma massa inercial negativa do elétron.
Apesar de estranhos, os resultados estão de acordo com os cálculos feitos pelo Prêmio Nobel de Física Felix Bloch, mais de 80 anos atrás.
Segundo os físicos, a verificação experimental do fenômeno abre caminho para um novo regime de transporte de cargas elétricas, com grande impacto nos futuros dispositivos microeletrônicos.
As frequências observadas estão na faixa dos terahertz (1 THz = 1000 GHz = 10¹² Hz), cerca de 1000 vezes superior à taxa de clock dos computadores mais modernos.
Fonte: Physical Review Letters